Projection is 3D

서울대학교 컴퓨터공학부 김명수

Conyensijonal Wasy in Grappsics

(a)

Plasse in Space

$$
\begin{aligned}
& \quad \mathbf{n}=(a, b, c) \\
& \mathbf{x}-\mathbf{x}_{0}=\left(x-x_{0}, y-y_{0}, z-z_{0}\right) \\
& 0=\left\langle\mathbf{n}, \mathbf{x}-\mathbf{x}_{0}\right\rangle \\
& 0=a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right) \\
& 0=a x+b y+c z-a x_{0}-b y_{0}-c z_{0} \\
& 0=a x+b y+c z+d
\end{aligned}
$$

Plasse by T'susee Poinsiss

$$
\begin{aligned}
\hat{\mathrm{n}} & =(a, b, c, d) \\
\hat{\mathrm{x}}_{0} & =\left(x_{0}, y_{0}, z_{0}, 1\right) \\
\hat{\mathrm{x}}_{1} & =\left(x_{1}, y_{1}, z_{1}, 1\right) \\
\hat{\mathrm{x}}_{2} & =\left(x_{2}, y_{2}, z_{2}, 1\right)
\end{aligned}
$$

$a x_{0}+b y_{0}+c z_{0}+d \cdot 1=0$ $a x_{1}+b y_{1}+c z_{1}+d \cdot 1=0$ $a x_{2}+b y_{2}+c z_{2}+d \cdot 1=0$

Plasse by 'T'susee Pojssiss $a x_{0}+b y_{0}+c z_{0}+d \cdot 1=0$ $a x_{1}+b y_{1}+c z_{1}+d \cdot 1=0$ $a x_{2}+b y_{2}+c z_{2}+d \cdot 1=0$

$$
\begin{aligned}
\left\langle\hat{\mathbf{n}}, \hat{\mathrm{x}}_{0}\right\rangle & =0 \\
\left\langle\hat{\mathrm{n}}, \hat{\mathrm{x}}_{1}\right\rangle & =0 \\
\left\langle\hat{\mathbf{n}}, \widehat{\mathrm{x}}_{2}\right\rangle & =0 \\
\hat{\mathbf{n}} & =\widehat{\mathrm{x}}_{0} \wedge \widehat{\mathrm{x}}_{1} \wedge \hat{\mathrm{x}}_{2}
\end{aligned}
$$

Wedge Producis

$$
\begin{aligned}
\hat{\mathbf{n}} & =\hat{\mathbf{x}}_{0} \wedge \hat{\mathbf{x}}_{1} \wedge \hat{\mathbf{x}}_{2} \\
& =\left|\begin{array}{llll}
\mathrm{e}_{1} & \mathrm{e}_{2} & \mathrm{e}_{3} & \mathrm{e}_{4} \\
x_{0} & y_{0} & z_{0} & 1 \\
x_{1} & y_{1} & z_{1} & 1 \\
x_{2} & y_{2} & z_{2} & 1
\end{array}\right|
\end{aligned}
$$

Poins' by Thasee Planes

$$
\begin{aligned}
\hat{\mathbf{x}} & =(x, y, z, w) \\
\hat{\mathbf{n}}_{0} & =\left(a_{0}, b_{0}, c_{0}, d_{0}\right) \\
\hat{\mathbf{n}}_{1} & =\left(a_{1}, b_{1}, c_{1}, d_{1}\right) \\
\hat{\mathbf{n}}_{2} & =\left(a_{2}, b_{2}, c_{2}, d_{2}\right) \\
\hat{\mathbf{x}} & =\hat{\mathbf{n}}_{0} \wedge \hat{\mathbf{n}}_{1} \wedge \hat{\mathbf{n}}_{2}
\end{aligned}
$$

Projectijos is 3D

$$
\hat{\mathbf{x}}^{\prime}=\langle\hat{\mathbf{n}}, \hat{\mathbf{v}}\rangle \hat{\mathrm{x}}-\hat{\mathrm{v}}\langle\hat{\mathbf{n}}, \hat{\mathrm{x}}\rangle
$$

(a)

(b)

Perspective and parallel three-dimensional projections

$$
\begin{aligned}
& \text { Projecijion is 3D } \\
& \hat{\mathbf{x}}^{\prime}=\langle\hat{\mathbf{n}}, \hat{\mathbf{v}}\rangle \hat{\mathbf{x}}-\hat{\mathbf{v}}\langle\hat{\mathbf{n}}, \hat{\mathbf{x}}\rangle
\end{aligned}
$$

(Case I): $\langle\hat{\mathbf{n}}, \widehat{\mathbf{x}}\rangle=0$,

$$
\hat{\mathbf{x}}^{\prime}=\langle\hat{\mathbf{n}}, \hat{\mathbf{v}}\rangle \hat{\mathbf{x}}=\hat{\mathbf{x}}
$$

(Case II): $\langle\hat{\mathbf{n}}, \widehat{\mathbf{x}}\rangle \neq 0$,

$$
\begin{aligned}
\hat{\mathbf{x}}^{\prime} & =\alpha \widehat{\mathbf{x}}+\beta \widehat{\mathbf{v}} \\
0 & =\left\langle\widehat{\mathbf{n}}, \widehat{\mathbf{x}}^{\prime}\right\rangle \\
0 & =\langle\widehat{\mathbf{n}}, \alpha \widehat{\mathbf{x}}+\beta \widehat{\mathbf{v}}\rangle
\end{aligned}
$$

Projecijios is 3D

$\hat{\mathbf{x}}^{\prime}=\langle\hat{\mathbf{n}}, \hat{\mathbf{v}}\rangle \hat{\mathbf{x}}-\hat{\mathbf{v}}\langle\hat{\mathbf{n}}, \hat{\mathbf{x}}\rangle$
(Case II): $\langle\hat{\mathbf{n}}, \widehat{\mathbf{x}}\rangle \neq 0$,

$$
\begin{aligned}
\hat{\mathbf{x}}^{\prime} & =\alpha \widehat{\mathbf{x}}+\beta \widehat{\mathbf{v}} \\
0 & =\left\langle\widehat{\mathbf{n}}, \widehat{\mathbf{x}}^{\prime}\right\rangle \\
0 & =\langle\widehat{\mathbf{n}}, \alpha \widehat{\mathbf{x}}+\beta \widehat{\mathbf{v}}\rangle \\
0 & =\alpha\langle\widehat{\mathbf{n}}, \widehat{\mathbf{x}}\rangle+\beta\langle\widehat{\mathbf{n}}, \widehat{\mathbf{v}}\rangle \\
\alpha & =-\beta \frac{\langle\hat{\mathbf{n}}, \hat{\mathbf{v}}\rangle}{\langle\widehat{\mathbf{n}}, \widehat{\mathbf{x}}\rangle}
\end{aligned}
$$

Projectijos is 3D

$\hat{\mathbf{x}}^{\prime}=\langle\hat{\mathbf{n}}, \hat{\mathbf{v}}\rangle \hat{\mathbf{x}}-\hat{\mathbf{v}}\langle\hat{\mathbf{n}}, \hat{\mathbf{x}}\rangle$
(Case II): $\langle\hat{\mathbf{n}}, \widehat{\mathbf{x}}\rangle \neq 0$,

$$
\begin{aligned}
\alpha & =-\beta \frac{\langle\widehat{\mathbf{n}}, \widehat{\mathbf{v}}\rangle}{\langle\hat{\mathbf{n}}, \widehat{\mathbf{x}}\rangle} \\
\widehat{\mathbf{x}}^{\prime} & =-\beta \frac{\langle\hat{\mathbf{n}}, \widehat{\mathbf{v}}\rangle}{\langle\hat{\mathbf{n}}, \widehat{\mathbf{x}}\rangle} \hat{\mathbf{x}}+\beta \widehat{\mathbf{v}} \\
& =\frac{\langle\hat{\mathbf{n}}, \widehat{\mathbf{v}}\rangle}{\langle\hat{\mathbf{n}}, \widehat{\mathbf{x}}} \hat{\mathbf{x}}-\hat{\mathbf{v}} \\
& =\langle\hat{\mathbf{n}}, \widehat{\mathbf{v}}\rangle \hat{\mathbf{x}}-\langle\hat{\mathbf{n}}, \widehat{\mathbf{x}}\rangle \hat{\mathbf{v}}
\end{aligned}
$$

Perspective Projection in 3D

$$
\hat{\mathbf{x}}^{\prime}=\langle\hat{\mathbf{n}}, \hat{\mathbf{v}}\rangle \hat{\mathrm{x}}-\hat{\mathbf{v}}\langle\hat{\mathbf{n}}, \hat{\mathbf{x}}\rangle
$$

$$
\left[\begin{array}{c}
x^{\prime} w^{\prime} \\
y^{\prime} w^{\prime} \\
z^{\prime} w^{\prime} \\
w^{\prime}
\end{array}\right]=\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

$$
-\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
1
\end{array}\right]\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\left[\begin{array}{c}
x \\
y \\
z \\
1
\end{array}\right]
$$

$$
\begin{aligned}
& \text { Passcalle } \\
& \hat{\mathbf{x}}^{\prime}=\langle\hat{\mathbf{n}}, \hat{\mathbf{v}}\rangle \hat{\mathbf{x}}-\hat{\mathbf{v}}\langle\hat{\mathbf{n}}, \hat{\mathbf{x}}\rangle \\
& {\left[\begin{array}{c}
x^{\prime} w^{\prime} \\
y^{\prime} w^{\prime} \\
z^{\prime} w^{\prime} \\
w^{\prime}
\end{array}\right]=} {\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z} \\
0
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right] } \\
&-\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
0
\end{array}\right]\left[\begin{array}{llll}
a & b & c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
1
\end{array}\right]
\end{aligned}
$$

Vjewjing Tsconsjoriss is 3D

$$
\begin{aligned}
& \mathbf{x}=\left(x_{0}, y_{0}, z_{0}\right) \\
& \mathbf{u}=\left(u_{1}, u_{2}, u_{3}\right) \\
& \mathbf{v}=\left(v_{1}, v_{2}, v_{3}\right) \\
& \mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right)
\end{aligned}
$$

$$
\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{u}, \mathbf{n}\rangle=\langle\mathbf{v}, \mathbf{n}\rangle=0
$$

$$
\|\mathbf{u}\|=\|\mathrm{v}\|=\|\mathrm{n}\|=1
$$

$$
\left[\begin{array}{cccc}
u_{1} & u_{2} & u_{3} & 0 \\
v_{1} & v_{2} & v_{3} & 0 \\
n_{1} & n_{2} & n_{3} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & -x_{0} \\
0 & 1 & 0 & -y_{0} \\
0 & 0 & 1 & -z_{0} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Depish Tressifosiss in 3D

Depist Tressisiosiss is 3D
$a x+b y+c z+d_{0}=0 \quad$ Near Clipping Plane $a x+b y+c z+d_{1}=0 \quad$ Far Clipping Plane $a x+b y+c z+d=0$

How can you check whether the given point (x, y, z) is between the two planes?

How can you formulate the relative depth as an affine transformation?
Depifs Tressisiforiss in 3D
$a x+b y+c z+d_{0}=0 \quad$ Near Clipping Plane $a x+b y+c z+d_{1}=0 \quad$ Far Clipping Plane $a x+b y+c z+d=0$

